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EXECUTIVE SUMMARY

Disturbance accommodating control theory is concerned with the need to
meet the control objectives despite interference from the disturbances.
Somtimes it is impossible to completely cancel the effect of a disturbance on
all the plant's states, but it is possible to cancel the disturbance's effect
on certain "critical" variables. This is known as disturbance absorption for
critical variables. The original theory on this subject Is described in
Reference 1. The objective here was to develop an alternative method based on
a state space approach. This has been done and is described herein. Example
problems illustrating the application of the theory are also included, in the
Appendix, with simulation results to verify the theory. The method developed
here retains the drawback of earlier methods [I] in that it is not always
possible to stabilize the non-critical variables. This is demonstrated in
Example 1 of Appendix. This lack of stabilization is, however, easier to spot
than in the older method.
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I. INTRODUCTION

Many real-world control problems require an ability to maintain adequate
control in the face of disturbances. Often, this can be handled by applying
the complete cancellation condition of Disturbance Accommodating Control (DAC)
theory. The complete cancellation condition allows us to cancel the distur-
bance's effect on all the state variables. This condition can not always be
met; thus, a method is needed to cancel the disturbance's effect on certain
critical variables. A method for doing this is described in Reference I.
But, as it is sometimes difficult to apply, an alternate method was sought.
This new method is developed and described herein.

II. ALTERNATE METHOD OF DISTURBANCE ABSORPTION FOR CRITICAL VARIABLES

In this report, we are concerned with finite-dimensional controlled
linear systems governed by differential equations of the forms:

X A*X + B*U + F*W (i)

where X - (Xl,...,Xn) is the state vector for the system, U - (Ui,...,Ur) is
the control input, and W - (WI,...,Wp) is the disturbance input. The matrices
A, B, and F are assumed to be known and constant. The class of disturbances
to be considered consists of waveform structured disturbances [2] which can be
modeled by:

W(t) - H*Z (2)

Z = D*Z (3)

where the vector Z - (Zi,...,ZM) is the state of the disturbance W. The
matrices H and D are known and constant. The disturbance is not directly
measurable, in general, but can be estimated using the techniques available in
DAC theory described in the references.

The problem is to stabilize the state vector X to a linear subspace such
that the critical state variables Xc = (Xci,...,Xcm), m<n, are asymptotically
stable to the null solution Xc(t) - 0 with the remaining (non-critical) state
variables remaining bound in the subspace. Assume that the complete cancel-
lation condition of DAC theory (B*r + F*H 0 0) is not possible for any choice
of r. Thus, the general disturbance cancellation theory cannot be applied to
the problem.
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Begin by partitioning the system given in Equation 1 into critical and

non-critical variables as shown below:

[4c - 4- A ] x + [-4W (4)

Since it is desired that the critical state variables (Xc) be stabilized to

zero, the control needs to be designed to make the critical state variables
asymptotically stable while canceling any effects of the disturbance or non-
critical states on the Xc. Thus, U could be designed as:

U = Up + Ud - Kp*Xc + rl*z + r2*Xnc (5)

where Up - Kp*Xc is responsible for stabilizing the critical variables to zero
while Ud - rl*Z + r2*Xnc cancels the effects of the disturbance and non-
critical variables on the Xc. This requires:

BI*(ri*Z + r2*Xnc) + A12*Xnc + Fi*H*Z - 0 (6)

or

Bl*rl - -FI*H (7)

Bi*r2 - -A12 (8)

where Kp is picked to stabilize:

Xc - (All + BI*Kp)Xc (9)

Note that the non-critical state variables ace ignored, and this is unwise

unless they are inherently stable, with respect to the subspace. Also, they
must remain bounded in the subspace. If the non-critical variables start to
grow without bound, most real system will soon run into trouble. Unfortunately,
there is not much that can be done to stabilize them using the above procedure.
It may sometimes be possible to exploit the non-unlqueness of the control action
in stabilizing the non-critical variables. The general form for the control
gain has been developed in Reference 3 and can be combined with the modified
disturbance cancellation condition in Equation 7 to yield a more general form
for the control parameters. The design equations for the control parame-
ters then become:

Bi*r - -Fl*H (10)
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K - -(C*B)f*C*A*M*M# + [I-(C*B)f*C*B],*M#

+ e[I - M*M#] (I)

where

C is an m x n matrix such that Xc - C*X
M is an n x n-m matrix of rank n-m spanning the

subspace such that C*M 0 0
(!)f is the Moore-Penrose generalized inverse of (!)

MO - (M'*M)-1 *M' where M' is the transpose of M
* is an r x n-m real parameter matrix
a is an r x n real parameter matrix chosen to make the

critical variables asymptotically stable
I is the identity matrix

The control action is given by U - K*X + r*z with K and r found from the above
relations. Note that using the K given in Equation 11 automatically cancels
the A12*Xnc term thus doing away with the need for Equation 8. When the
generalized inverse of C*B multiplied with C*B is not equal to I, we can
attempt to specify * in the second term in Equation I to stabilize the non-
critical variables.

When the above procedure is examined closely, it bec:),aes apparent that it
fails for BI 0 0. This is due to the dependence on U to cancel the effects of
the disturbance and the non-critical variables on the critical variables. If
Bi is zero the control cannot directly affect the critical variables and thus
the only alternative is to maneuver the non-critical state variables to cancel
the disturbance effects on the Xc. Thus, it is desired that:

A12*Xnc + Fl*H*Z = 0 (12)

To accomplish this, a servo tracking system is designed where the servo com-
mand drives Xnc to cancel the disturbance effects on the critical variables.
Define the servo tracking error as:

e - X - Xs (13)

with the servo command:

Xs = E1z -=> ec - Xc (14)

rJ nc - Xnc - r*z
then

= X - Xs (15)

or
r2 2]. [+ [A12*r + F1 H] [ol

-- I-----------I 16)
£ L21 A2 e Lnc BJ 2]U A22*r + F2*iI Lr
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Which when written out becomes:

ec - A1l*ec + A12*enc + A12*F*Z + F1*H*Z (17)

cnc - A21*ec + A22*enc + B2*U - r*Z
+ A22*r*Z + F2*H*Z (18)

Now split the coutrol action into U - Up + Ud and use Ud to cancel the distur-
bance terms. Cancellation of the disturbance effects on e requires that:

A12 * r -Fl *H (19)

and

B2*Ud - -A22*F*Z - F2*H*Z + r*Z (20)

Thus, choose Ud - r2*Z + r3*Z such that:

B2*r2 - -A22*r - F2*U (21)

and

B2*r3 - r (22)

where r must satisfy Equation 19. To obtain zero tracking error it is

required that:

e - (A + B*K)c (23)

be asymptotically stable. Thus, design Up = K*c to place the elgenvalues of
A + B*K in the left half plane.

Note that if some of the rows of B2 are also zero, then they are not
directly controllable by U and another servo tracker may be needed to contrA
them to the desired values. This is demonstrated in Example 3.

Equations 19, 21, and 22 can be combined to yield:

A12*B2*r3 --FI*H (24)

and

B2*r2 - -A22*B2*r 3 - F2*H (25)
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Replace r in Equation 14 with r - B2*r3. This eliminates the need to find r.

Now apply the generalized inverse to obtain:

r3 --(AI2*B2) f *Fl*H (26)

r2 --(B2)f (A22*B2*r3 + F2*H) (27)

Equations 26 and 27, along with satisfactory stabilization of Equation 23,
are sufficient for a solution. They are not necessary however, as can be
easily seen from Example 3 where a satisfactory solution is obtained when no
solution exists for 26 and 27.

Note that this procedure depends on the ability to maneuver the non-
critical variables as desired. This may not be possible in some cases, while
in others a surplus of maneuverable variables may be available giving the
engineer some design freedom.

III. DESIGN PROCEDURE SUMMARY

The design procedure is summarized for the two cases developed previously.
First, partition the system into critical and non-critical state variables as
shown:

cI [All A2 [Xc I+ [Bi 1 u +r iW
[nc] 21 [ ]2 r A22 J ncJ [ 22 [ j

If Bi is not equal to zero, then apply the first procedure and attempt to

design the control action as U - K*X + r*Z where K and r must satisfy:

Bl*r = -Fi*H

and

K - -(C*B)f *C*A*M*M# + [I-(C*B)f *C*B]**M#
+ eIt - M*M1]

where

C is an m x n matrix such that Xc - C*X
M is an n x n-m matrix of rank n-m spanning the

subspace such that C*M = 0
(I)f is the Moore-Penrose generalized inverse of (!)
M1 - (M'*M)- I *M' where M' is the transpose of M
* is an r x n-m real parameter matrix
e is an r x n real parameter matrbx chosen to make the

critical variables asymptotically stable
I is the Identity matrix
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Note, this procedure is not always successful even though K and r are obtained

meeting the above criteria. This method depends on the non-critical state

variables remaining stable and bounded In the subspace. This may occur

naturally or when C*B pre-multiplied with its generalized inverse Is not equal

to I, we may be able to specify * above such that it aids in stabilization of

the non-critical variables.

For Bi = 0, use the second procedure. Design r2, r3 to satisfy:

r3 --(A2*B2)f*FI*H

r2 -(B2)f(A22*B2*r3 + F2*H)

and Up K*c to stabilize

- (A + B*K)e

The final control is then given by:

U - K*(X - Xs) + r2*Z + r3*Z

where

Xs
IB2*rFj

Note that meeting these conditions are sufficient for a solution, but they are

not necessary. In particular, if the B2 matrix has some zero rows, the servo

tracking idea can be repeated to maneuver these indirectly controlled states
and possibly meet our design criteria.
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IV. CONCLUSIONS/REMARKS

A new design procedure for critical variable disturbance absorption
controllers has been presented here. This procedure consists of two basic
methods as described above and is demonstrated in the included examples.
Simulation of the examples was done to verify the design and no problems were
noted. This method retains the drawback of the earlier method (Reference 1)
in that it is not always possible to stabilize the non-critical variables.
This is demonstrated in Example 1. This lack of stabilization is, however,
easier to spot than in the older method. The second procedure depends on the
ability to maneuver the non-critical variables which is very application
dependent and may or may not be possible.

It is hoped that further researchers will carry on the development and
refine the method still more with hopefully the addition of necessary and
sufficient conditions for a successful application of the design.
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EXAMPLE #1

Objective: Design the control input (U) to stabilize the given system
where XL is the critical variable X. and X= is the noncritical variable X-..

X =X U W ; X. = [I O]X
0 a 1 I

I I [ I - I[ ; ju [ 0 ; (System)

W is a piecewise constant disturbance and a is a constant. Assume:

W = Z ==> H = 1

and

= a(t); with a(t) zero almost everywhere.

Solution:

Partition the system:

1- 1 ]Ix0[ u 10 [01
91 is not zero, so try the control action U - K*X + r*z with r and K given by

equations 10 and 11 respectively.

Bor = -Fj*H =-> isr = -O*i ==> r = o.

K -(C*B)O*C*A*M*M" + [1-(C9B)'*C*B]*M e[i -M*m,

where

thus 0 )= 01
M" =(M'MI-,M" ([0 1] 1 1)-'.[0 1] = [0 13

(CB)f = ([1 0) I 1 =

K - -1 1) [0 01 + 1 -130*M- + eL 9221 01
K = [0 -13 + teL Oj = [e, -12

The control action is then:

U e- OXL - X2

Substituting U into the original system yields:

X, X, 4 X2 + .*XL - X2 = X.*(I + e')

A-I



= a$Xz * eL*X& - X2 + Z

Now design e8 to make X& asymptotically stable. Pick e = -2, then

U = -2*X& - X=

and the system becomes:

X = - X

;= (a - I)Xa - 2*XL + Z

Note: The stability of X= depends on the value of a. Simulation
results are shown for:

a = -1 => X= is stable
a = 2 > X= is unstable

A-2
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EXAMPLE #2

etLY&: Design the control input (U) to stabilize the given system
where X& is the critical variable X.. X2 and X3 are the noncritical variables
making up the vector X.O.

x = O X I U + 01w; X. = [ 0 OIX

1 1 [(system)

W is a piecewise constant disturbance. Assume:

W Z -> H = I

and

Z O(t); with a(t) zero almost everywhere.

Solutions

Partition the system:

0 0 1~x 1 Fo + 01

82. a 0 for this system, thus we tise the second procedure and design

Ud r2*z + r=Z

where r= and r7 are given by equations 26 and 27.

rv = -(A&2 B. 2 )0*FL*H a-Fj*H = -1

r.- -cB,)f(A,=*D.r, +' F=*H) - -1/2[1 13 1

Note that:

(82)f - (B='Ba)-'82" = 1/2[1 1]

The control action Ua is:

U. = Z - Z

Now design U, = K4 to stabilize equation 23:

; a (A + B*K).

Use the third order ITAE response as the model equation.

E' + 1.75m* = + 2.15*E . I - 0

This yields K = C-1.4 -0.35 -1.4] and since

UO a K*(X - X.)

A-5



where

0 0X., I= -- - Z z

The total control action is then:

U = U, * U, a -1.4X& - 0.35(X2 + Z) - 1.4(Xm + Z) + Z - Z

For W piecewise constant Z = 0 almost everywhere. Therefore:

U = -1.4X. - 0.35X= - 1.4Xz - 0.75Z

Now design a full order estimator to estimate Z. The composite system is giver

by:

01 01 [01 XL
010 I X2

X -1 1 0 0 X+ IX = X3
00 0 0 0 Z

and the observer with poles placed at -4 is:

F-16 1 0 101 0 16
^ -353 o 1 o 1 353

X -272 1 0 0 X" 1 U + |271 XL

0256 0 0 L-256
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EXAMPLE #3

Objective: Design che control input (U) to stabilize the given system
where X, is the critical variable X.. Xa and X3 are the noncritical variables
making up the vector X-..

x 01 0 J X + [0 U 0 ; X. - El 0 OiX
0 1 0 1 0

W is a piecewise constant disturbance. Assume:

W =Z ==> H1

and

Z O a(t); with a(t) zero almost everywhere.

Solution:

Partition the system:

0 0 0 1 + U + Z
X~ft 0 1 0 X-0

B, 3 0 for this system, thus we try the second procedure and design

Ud = r sz + rz$Z

where r= and r3 are given by equations 28 and 27.

r. -(D 2 )'(A 2 =B2e*r F=*H)

Note that:

ALIBZ = 0

Inspection of these two equations reveals no solution is possible. Since B=
has a zero row, let's try to servo control X2 also. Use equation 19 to
determine r and substitute r into the equation for the servo tracking error.
Design r to satisfy A&=$8 -Fx*H

L 'r J ; where T is arbitrary

Equation 16 is used for the servo tracking error. Substituting in r yields:

A-10



0= [ :0 [ + Z+ [

The control cannot completely cancel the effect on the G-. states, let s try

using 63 to cancel the disturbance acting on e=, in a manner similar to what

was done with the critical state. Define:

11 -6W with 'm6 = 0
P*Z + Oai

Note that the set point state must now contain the derivative of the
disturbance since it appears in the 6 state equation. Taking the derivative
yields:

which in matrix form is:

= 1 0 + [ 1 1 Z 3 - ] -1*

or when written out becomes:

IJL = AZ

= - , + *Z + OZ +',z- Z

Mi = Mi + U - Z + TsZ - O*iZ + OZ

T, 3, and a must be chosen to remove the disturbance on 62 which is equal to
w2 . Thus letting 3 = T = 0 removes the disturbance and setting a = 1 removes
the derivative of the disturbance. Um can be used to remove the remaining
disturbance terms (those in the equation for p3 ). Noting that 1 = T = 0 and
a - 1, makes it matter of inspection to determine U. as:

U= Z - Z

Now we have removed the disturbance from the system and desire to stabilize it
using Up. Let:

Up - Kp

and determine K to stabilize:

P - (A + B*K)M

Use the third order ITAE response as the model equation.

A-l



£'z + 1.75*E2 + 2.15f*E +1 = 0

Then
U,. -p&. - 3.15*.A2 - 1.75*Vz

But W 6 - En,., therefore:

I.AS = - (3Z - Q = 63 - Z

So
Up -e - 3.15*62 - 1.75*63z + 1.75*Z

But a x - X.., therfore:

4, X + Z

which yields;

U,. = -X, - 3.15*X 2 - 3.15*Z - 1.75*Xm, + 1.758Z

The total control action is then:

U wUp + U = -X, 3.15X= 1.75X3 - 2.15*Z +- 1.75*Z i

For W piecewise constant Z 0 and Z 0 almost everywhere. Therefore:

U -- X, - 3.15X= 1.75Xz 2.15Z

Now design a full order estimator to estimate Z. The composite system is giver

by:

X 01 0 0 X + 1 jU I X

0 00 0 L zjL~

and the observer with poles placed at -4 is:

F 16 10 1] 0 F16
~ -353 0 10 0 35

X - -272 1 00 jX + U +- 272 X,L256 0 0 0  0 [256
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